Archives

  • 2018-07
  • 2018-10
  • 2018-11
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-07
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • br Skin and Hair Aging Lifestyle and the

    2018-10-23


    Skin and Hair Aging, Lifestyle and the Skin and Scalp Microbiomes William W. Mohn (Vancouver, Canada) reported on a cross-sectional study investigating the skin and scalp microbiome in relation to skin and hair aging and lifestyle, and involving 495 subjects 10–78years of age. Diversity of the scalp microbiome increased with age, but its overall composition was not correlated with age. The reverse was true of the forehead microbiome. The authors also showed that specific microbial populations were correlated with visible signs of skin and hair aging and lifestyle factors. Many forehead populations were associated with age and, more weakly, with age-related characteristics like periorbital wrinkling and facial hyperpigmentation, while the reverse was true for scalp populations. Overall, facial skin and scalp have distinct microbiome communities uniquely associated with skin and hair aging and lifestyle factors. Two Corynebacterium populations exhibited a striking pattern of co-exclusion on both the forehead and scalp. One population was abundant on most subjects in younger age classes, but it appeared to be completely displaced by the other during middle age.
    Osteoarthritis (OA) has traditionally been viewed as a non-inflammatory arthropathy and has not been considered a ‘serious disease’. However, this view has radically changed in recent years, due to the complexity and heterogeneity of the patient populations, spiralling socio-economical costs and long-term impact on the quality of life of affected individuals. There is an acute need for objective and non-invasive diagnostic biomarkers in OA, markers that can stratify patient subtypes and thereby direct therapeutic treatments at an earlier disease stage (read personal health care (PHC)) (). Increased interest in the development of new diagnostic and prognostic tests for early forms of OA may incorporate the use of blood-based biomarkers; however, both research and regulated development and approval are still needed to reach a diagnostically important significant point where a given biomarker will benefit the clinical management of the patient. The OA Biomarker Landscape Today There are currently no disease-modifying hsp90 inhibitor drugs (DMOAD) available for treatment of OA patients (Mobasheri, 2013; Qvist et al., 2008). This may be due to the heterogeneity of the OA population, where the origin and driver of disease progression is often poorly understood. The main treatment options for OA presently are pain relief, physical therapy and nutritional supplements (nutraceuticals). However, none of these can halt or reverse disease progression. In addition, diagnosis is Variable region often subjective, due to the lack of objective, precise and accurate diagnostic devices. Thus the limited clinical diagnosis and characterization of the individual patient will adversely influence healthcare management and the recruitment of the right patient cohorts for the testing of drugs in clinical trials. There is a medical need for objective, precise and accurate in vitro diagnostic devices for clinical trial enrichment (Kraus et al., 2015; Karsdal et al., 2013).
    What Is the Medical Need for Biomarkers? The lack of approved DMOADs in OA drags a long tail of failed clinical drug trials. Recently the US Food and Drug Administration (FDA), the European Medicines Agency (EMA) and other regulatory agencies have published guidelines on how biomarkers should be defined. Different groups and public-private partnerships have proposed different models for classifying OA biomarkers for clinical use (Bauer et al., 2006; Kraus et al., 2011; Bay-Jensen et al., 2016a,b). There is a general consensus on the medical need for biomarker development which may be summarized as seven key points:
    Message From the Regulators The public attention to biomarkers is increasing, recently further emphasized by the “white house” initiate focusing on quantifiable tools for patient election and monitoring. On the regulatory side, the FDA issued a position document describing the need and road ahead for personalized medicine “FDA: Paving the Way for Personalized Medicine”, which later resulted in new guidelines to faster biomarker tool development by the guidelines “Identifying Potential Biomarkers for Qualification and Describing Contexts of Use To Address Areas Important to Drug Development”, which are in addition to the standard guidelines for in vitro companion diagnostic device. This has led to the discussion on prospective-retrospective biomarker analysis for regulatory consideration, by the white paper from the industry pharmacogenomics working group (Patterson et al., 2011). This will greatly assist precision medicine and PHC by guiding the discussion on how to implement a “prospective-retrospective biomarker analysis”. The prospective-retrospective biomarker analysis approach is developed to “rescue” failed phase III trials.Qualified biomarkers are to be measured in certified, high-quality laboratories and analyzed using predefined statistical analysis plans to test hypotheses related to retrospective analysis of technically and biologically validated biomarkers.